Convex envelopes of bivariate functions through the solution of KKT systems
نویسنده
چکیده
In this paper we exploit a slight variant of a result previously proved in [11] to define a procedure which delivers the convex envelope of some bivariate functions over polytopes. The procedure is based on the solution of a KKT system and simplifies the derivation of the convex envelope with respect to previously proposed techniques. The procedure is applied to derive the convex envelope of the bilinear function xy over any polytope, and the convex envelope of functions xy over boxes.
منابع مشابه
On convex envelopes and underestimators for bivariate functions
In this paper we discuss convex underestimators for bivariate functions. We first present a method for deriving convex envelopes over the simplest two-dimensional polytopes, i.e., triangles. Next, we propose a technique to compute the value at some point of the convex envelope over a general two-dimensional polytope, together with a supporting hyperplane of the convex envelope at that point. No...
متن کاملThe KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings
The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...
متن کاملSUPER- AND SUB-ADDITIVE ENVELOPES OF AGGREGATION FUNCTIONS: INTERPLAY BETWEEN LOCAL AND GLOBAL PROPERTIES, AND APPROXIMATION
Super- and sub-additive transformations of aggregation functions have been recently introduced by Greco, Mesiar, Rindone and v{S}ipeky [The superadditive and the subadditive transformations of integrals and aggregation functions, {it Fuzzy Sets and Systems} {bf 291} (2016), 40--53]. In this article we give a survey of the recent development regarding the existence of aggregation functions with ...
متن کاملON THE POWER FUNCTION OF THE LRT AGAINST ONE-SIDED AND TWO-SIDED ALTERNATIVES IN BIVARIATE NORMAL DISTRIBUTION
This paper addresses the problem of testing simple hypotheses about the mean of a bivariate normal distribution with identity covariance matrix against restricted alternatives. The LRTs and their power functions for such types of hypotheses are derived. Furthermore, through some elementary calculus, it is shown that the power function of the LRT satisfies certain monotonicity and symmetry p...
متن کاملSOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016